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What is a Hybrid Model? 

•  Combination of several parallel 
programming models in the same 
program 
♦ May be mixed in the same source 
♦ May be combinations of components or 

routines, each of which is in a single parallel 
programming model 

•  MPI + Threads or MPI + OpenMP is the 
most familiar hybrid model (that 
involves MPI) 
♦ There are other interesting choices for 

which we should prepare 
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Why a Hybrid Model? 

•  Note that in some ways MPI is already a hybrid 
programming model (MPI + C; MPI + Fortran) 
♦  Adding a third programming model is not a major change… 

•  Also note that many applications are multilingual, built 
from pieces in C, C++, Python, Matlab, … 
♦  Developers use the best tool for each part of their program 

•  Scale of machines to come encourage the use of 
different programming models to address issues such as 
♦  Declining memory per core 
♦  Multiple threads/core 
♦  Load balance 
♦  Algorithmic issues 
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MPI and Threads 

•  MPI describes parallelism between processes 
(with separate address spaces) 

•  Thread parallelism provides a shared-memory 
model within a process 

•  OpenMP and Pthreads are common models 
♦  OpenMP provides convenient features for loop-level 

parallelism. Threads are created and managed by 
the compiler, based on user directives. 

♦  Pthreads provide more complex and dynamic 
approaches. Threads are created and managed 
explicitly by the user. 
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Programming for Multicore 

•  Almost all chips are multicore these days 
•  Today’s clusters often comprise multiple CPUs per node 

sharing memory, and the nodes themselves are 
connected by a network 

•  Common options for programming such clusters 
♦  All MPI 

•  Use MPI to communicate between processes both within a 
node and across nodes 

•  MPI implementation internally uses shared memory to 
communicate within a node 

♦  MPI + OpenMP (or MPI + OpenACC) 
•  Use OpenMP within a node and MPI across nodes 

♦  MPI + Pthreads 
•  Use Pthreads within a node and MPI across nodes  

•  The latter two approaches are known as “hybrid 
programming” 
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Myths About the MPI + OpenMP 
Hybrid Model 

1.  Never works 
•  Examples from FEM assembly, others show benefit 

2.  Always works 
•  Examples from NAS, EarthSim, others show MPI 

everywhere often as fast (or faster!) as hybrid models 
3.  Requires a special thread-safe MPI 

•  In many cases does not; in others, requires a level 
defined in MPI 

4.  Harder to program  
•  Harder than what? 
•  Really the classic solution to complexity - divide problem 

into separate problems 
•  10000-fold coarse-grain parallelism + 100-fold fine-grain 

parallelism gives 1,000,000-fold total parallelism 
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Special Note 
•  Because neither 1 nor 2 are true, and 4 isn't entirely false, 

it is important for applications to engineer codes for the 
hybrid model.  Applications must determine their: 
♦  Memory bandwidth requirements 
♦  Memory hierarchy requirements 
♦  Load Balance 

•  Don't confuse problems with getting good performance out 
of OpenMP with problems with the Hybrid programming 
model 

•  See Using OpenMP by Barbara Chapman,  
Gabriele Jost and Ruud van der Pas,  
Chapters 5 and 6, for programming  
OpenMP for performance 
♦  See pages 207-211 where they discuss the 

hybrid model 
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MPI’s Four Levels of Thread 
Safety 

•  MPI defines four levels of thread safety. These are in 
the form of commitments the application makes to the 
MPI implementation. 
♦  MPI_THREAD_SINGLE: only one thread exists in the 

application 
♦  MPI_THREAD_FUNNELED: multithreaded, but only the 

main thread makes MPI calls (the one that called MPI_Init 
or MPI_Init_thread) 

♦  MPI_THREAD_SERIALIZED: multithreaded, but only one 
thread at a time makes MPI calls 

♦  MPI_THREAD_MULTIPLE: multithreaded and any thread 
can make MPI calls at any time (with some restrictions to 
avoid races – see next slide) 
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Specifying the Level of 
Thread Safety 

• MPI defines an alternative to 
MPI_Init 
♦ MPI_Init_thread(argc, argv,   

                         requested, provided) 
• Application indicates what level it needs; 

MPI implementation returns the level it 
supports 

• Many (not all) builds of MPICH 
exploit this runtime control 
♦ If you don’t need thread safety, there is 

little extra cost 
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Specification of 
MPI_THREAD_MULTIPLE 

•  When multiple threads make MPI calls 
concurrently, the outcome will be as if the calls 
executed sequentially in some (any) order 

•  Blocking MPI calls will block only the calling thread 
and will not prevent other threads from running or 
executing MPI functions 

•  It is the user's responsibility to prevent races when 
threads in the same application post conflicting 
MPI calls  
♦  e.g., accessing an info object from one thread and 

freeing it from another thread 
•  User must ensure that collective operations on the 

same communicator, window, or file handle are 
correctly ordered among threads 
♦  e.g., cannot call a broadcast on one thread and a 

reduce on another thread on the same communicator 
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Threads and MPI in MPI-2  
(and MPI-3) 

•  An implementation is not required to 
support levels higher than 
MPI_THREAD_SINGLE; that is, an 
implementation is not required to be 
thread safe 

•  A fully thread-safe implementation will 
support MPI_THREAD_MULTIPLE 

•  A program that calls MPI_Init (instead of 
MPI_Init_thread) should assume that 
only MPI_THREAD_SINGLE is supported 
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The Current Situation 

•  All MPI implementations support MPI_THREAD_SINGLE 
(duh). 

•  They probably support MPI_THREAD_FUNNELED even if 
they don’t admit it. 
♦  Does require thread-safe malloc 
♦  Probably OK in simple OpenMP programs 

•  Many (but not all) implementations support 
THREAD_MULTIPLE 
♦  Hard to implement efficiently though (lock granularity 

issue) 
•  “Easy” OpenMP programs (loops parallelized with 

OpenMP, communication in between loops) only need 
FUNNELED 
♦  So don’t need “thread-safe” MPI for many hybrid programs 
♦  But watch out for Amdahl’s Law! 
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What MPI’s Thread Safety Means in 
the Hybrid MPI+OpenMP Context 

•  MPI_THREAD_SINGLE 
♦  There is no OpenMP multithreading in the program. 

•  MPI_THREAD_FUNNELED 
♦  All of the MPI calls are made by the master thread. 

i.e. all MPI calls are 
•  Outside OpenMP parallel regions, or 
•  Inside OpenMP master regions, or 
•  Guarded by call to MPI_Is_thread_main MPI call. 

�  (same thread that called MPI_Init_thread) 

•  MPI_THREAD_SERIALIZED 
#pragma omp parallel 
… 
#pragma omp single 
{ 
   …MPI calls allowed here… 
} 

•  MPI_THREAD_MULTIPLE 
♦  Any thread may make an MPI call at any time 
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Some Things to Watch for in 
OpenMP 

•  Limited thread and no explicit memory affinity control 
(but see OpenMP 4.0 and the 4.1 Draft) 
♦  “First touch” (have intended “owning” thread perform first 

access) provides initial static mapping of memory 
•  Next touch (move ownership to most recent thread) could 

help 
♦  No portable way to reassign memory affinity – reduces the 

effectiveness of OpenMP when used to improve load 
balancing. 

•  Memory model can require explicit “memory flush” 
operations 
♦  Defaults allow race conditions 
♦  Humans notoriously poor at recognizing all races 

•  It only takes one mistake to create a hard-to-find bug 
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Some Things to Watch for in  
MPI + OpenMP 

•  No interface for apportioning resources 
between MPI and OpenMP 
♦  On an SMP node, how many MPI processes and how 

many OpenMP Threads? 
•  Note the static nature assumed by this question 

♦  Note that having more threads than cores can be 
important for hiding latency 

•  Requires very lightweight threads 

•  Competition for resources 
♦  Particularly memory bandwidth and network access 
♦  Apportionment of network access between threads 

and processes is also a problem, as we’ve already 
seen. 



16 

Where Does the MPI + OpenMP 
Hybrid Model Work Well? 

• Compute-bound loops 
♦ Many operations per memory load 

• Fine-grain parallelism 
♦ Algorithms that are latency-sensitive 

• Load balancing 
♦ Similar to fine-grain parallelism; ease of  

• Memory bound loops 
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Compute-Bound Loops 

• Loops that involve many 
operations per load from memory  
♦ This can happen in some kinds of 

matrix assembly, for example. 
♦ “Life” update partially compute bound 

(all of those branches) 
♦ Jacobi update not compute bound 
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Fine-Grain Parallelism 

•  Algorithms that require frequent 
exchanges of small amounts of data 

•  E.g., in blocked preconditioners, 
where fewer, larger blocks, each 
managed with OpenMP, as opposed 
to more, smaller, single-threaded 
blocks in the all-MPI version, gives 
you an algorithmic advantage (e.g., 
fewer iterations in a preconditioned 
linear solution algorithm). 

•  Even if memory bound 
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Load Balancing 

•  Where the computational load isn't 
exactly the same in all threads/
processes; this can be viewed as a 
variation on fine-grained access. 

•  OpenMP schedules can handle some of 
this 
♦  For very fine grain cases, a mix of static and 

dynamic scheduling may be more efficient 
♦ Current research looking at more elaborate 

and efficient schedules for this case 
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Memory-Bound Loops 

• Where read data is shared, so that 
cache memory can be used more 
efficiently. 

• Example: Table lookup for 
evaluating equations of state 
♦ Table can be shared 
♦ If table evaluated as necessary, 

evaluations can be shared     
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Where is Pure MPI Better? 

•  Trying to use OpenMP + MPI on very 
regular, memory-bandwidth-bound 
computations is likely to lose because of 
the better, programmer-enforced 
memory locality management in the 
pure MPI version. 

•  Another reason to use more than one 
MPI process - if a single process (or 
thread) can't saturate the interconnect - 
then use multiple communicating 
processes or threads. 
♦ Note that threads and processes are not 

equal - see next slides 
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Tests with Multiple Threads 
versus Processes 
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•  Consider these two 
cases: 
♦  Nodes with 4 cores 
♦  1 process with four 

threads sends to 1 process 
with four threads, each 
thread sending, or 

♦  4 processes, each with 
one thread, sending to a 
corresponding thread 

•  User expectation is that 
the performance is the 
same 

•  Results are joint work 
with Rajeev Thakur 
(Argonne) 
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Concurrent Bandwidth Test 

Lesson: Its hard to provide full performance from threads 

(Recent results on current platforms show similar 
behavior) 
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Locality is Critical 

•  Placement of processes and threads 
is critical for performance 
♦ Placement of processes impacts use of 

communication links; poor placement 
creates more communication 

♦ Placement of threads within a process on 
cores impacts both memory and 
intranode performance 
• Threads must bind to preserve cache  
•  In multi-chip nodes, some cores closer than 

others – same issue as processes 
• MPI has limited, but useful, features 

for placement 
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Importance of ordering processes/
threads within a multichip node 

•  2x4 processes in a mesh 
•  How should they be 

mapped onto this single 
node? 

•  Round robin (by chip)? 
♦  Labels are coordinates of 

process in logical 
computational mesh 

♦  Results in 3x interchip 
communication than the 
natural order 

♦  Same issue results if there 
is 1 process with 4 threads 
on each chip, or 1 process 
with 8 threads on the node 

core core 

core core 

core core 

core core 

0,0 2,0 

0,1 2,1 

1,0 3,0 

1,1 3,1 
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Hybrid Model Options: Fine 

•  Fine grain model: 
♦ Program is single threaded except when 

actively using multiple threads, e.g., for 
loop processing 

♦ Pro: 
•  Easily added to existing MPI program 

♦ Con: 
•  Adds overhead in creating and/or managing 

threads 
•  Locality and affinity may be an issue (no 

guarantees) 
•  Amdahl’s Law problem – serial sections limit 

speedup 
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Hybrid Model Options: 
Coarse 

• Coarse grain model 
♦ Majority of program runs within “omp 

parallel” 
♦ Pro: 

• Lowers overhead of using threads, 
including creation, locality, and affinity 

• Promotes a more parallel coding style 
♦ Con: 

• More complex coding, easier to introduce 
race condition errors 
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Challenges for  
Programming Models 

•  Parallel programming models need to provide ways to 
coordinate resource allocation 
♦  Numbers of cores/threads  
♦  Assignment (affinity) of cores/threads 
♦  Intranode memory bandwidth 
♦  Internode memory bandwidth 

•  They must also provide clean ways to share data 
♦  Consistent memory models 
♦  Decide whether its best to make it easy and transparent 

for the programmer (but slow) or fast but hard (or 
impossible, which is often the current state) 

•  Remember, parallel programming is about performance 
♦  You will always get higher programmer productivity with a 

single threaded code 
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Challenges for 
Implementations 

•  Sharing of communication infrastructure 
♦  For example, the Berkeley UPC implementation 

makes use of GASNET, an efficient, portable 
communication layer 

♦  But GASNET does not provide all of the features 
required by an efficient, full MPI implementation 

♦  Similarly, the communication layer used by MPI 
implementations may not provide all of the features 
needed by UPC (see �Problems with using MPI 1.1 
and 2.0 as compilation targets for parallel language 
implementations�, Dan Bonachea, Jason Duell) 

•  It is possible to build such infrastuctures 
♦  But current examples only address some of the 

issues. 
♦  Resource allocation and sharing not covered 
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Conclusions 

•  Hybrid programming models exploit complementary 
strengths 
♦  In many cases, can replace OpenMP with OpenACC or 

other accelerator programming system 
•  Evolutionary Path to Hybrid Models 

♦  Short term - better support for resource sharing 
•  We need to experiment with specifying additional information, 

e.g., through mpiexec 
♦  Medium term - better support for interoperating 

components 
•  We need to ensure that communication infrastructures can 

cooperate 
•  Consider extensions to make implementations aware that they 

are in a hybrid model program 
♦  Long term - Generalized model, efficient sharing of 

communication and computation infrastructure 


